One of the main tasks of any graduate student in the STEM fields, Masters or Doctorate, is engaging in research. It goes without saying that a significant amount of time during matriculation will be spent in the lab or field working on hypotheses and hoping to contribute something new to their respective discipline. But where do these students learn their skills to begin with? And with such low completion rates in STEM disciplines, how to do we get undergraduate students to stick around long enough to learn what they need to go onto and succeed in graduate school?
Across the country, undergraduate research programs have been growing and proving to be an effective way of retaining students. It's had such an effect that President Obama called it out directly in his speech to the National Academies of Sciences. These mentoring programs have proven to teach students the basic physical and rationalization skills they need to pursue advanced degrees, better preparing them for the work ahead.
But a question that has yet to be answered, which we throw out to you, is how to engage undergraduate students in research to begin with? As Eagan et al. highlight in their report, Engaging Undergraduates in Science Research:
"Students who initially enter college with the intention of majoring in science, technology, engineering, or mathematics (STEM) fields have substantially lower completion rates in these disciplines than do their peers who enter with aspirations for a non-STEM major (Huang, Taddese, & Walter, 2000). Compounding this problem, under-represented racial minority (URM) students in STEM have extremely low bachelor’s degree completion rates, especially when compared with their White and Asian American counterparts. A Higher Education Research Institute (HERI) report indicated that just 24.5% of White students and 32.4% of Asian American students who entered college with the intention of majoring in a STEM field completed a bachelor’s degree in STEM within four years while 15.9% of Latino, 13.2% of Black, and 14.0% of Native American students did the same (HERI, 2010)."
So, how do we catch these students who tend to fall through the cracks, who may not understand what research can do for their future? What can we do to make sure they enroll in available programs and increase the retention rates of under-represented groups?
Share your ideas with us here, or on our Facebook page. we'd love to know what you're doing (or think could be done) to get and keep more students in STEM courses.
Go On Till You Come to the End; Then Stop
7 years ago
No comments:
Post a Comment